식별자(UID, Unique Identifier) 확정
엔터티 내의 모든 인스턴스는 유일하게 구분되어야 한다. 이러한 유일성을 보장하기 위해서 필요한 것이 식별자이다. 식별자에는 크게 본질 식별자(Primary UID 또는 Intrinsic UID), 주(실질) 식별자(Actual UID), 대체(보조) 식별자(Secondary UID)로 구분할 수 있다. 대체 식별자는 방법론에 따라서 AK 혹은 Alternate Key로 부르기도 하지만 현재 단계에서는 Key 보다 식별자가 더 적절한 표현이다.
본질 식별자
엔터티에는 인조 식별자(Artificial Unique Identifier)가 있고, 진주어(眞主語)에 해당하는 관계나 속성이 어딘가에 있다. 개념 데이터 모델링 과정에서 키 엔터티와 일부 핵심 엔터티에 대해서 본질 식별자를 정의하였다. 여기에서는 엔터티 상세화 단계에서 정의되어질 핵심,액션(행위) 엔터티에 대한 본질 식별자를 정의한다.
본질 식별자를 정의하는 방법은 키 엔터티와 행위 엔터티가 서로 다르다. 행위 엔터티를 정의하는 방법에는 상황에 따라 하향식과 상향식으로 접근하는 방식을 적용할 수 있다. 키 엔터티는 부모가 없이 창조된 집합이므로 식별자 또한 창조시켜 주어야 한다. 그러나 행위 엔터티는 항상 부모가 누구인지를 확인하는 방식으로 진행된다.
1) 키 엔터티의 본질 식별자
키 엔터티는 우리가 잘 알고 있듯이 사원, 고객, 상품과 같이 부모 엔터티 없이도 혼자서 정의될 수 있는 엔터티이다. 예를 들면 사원 엔터티에는 이미 이전부터 정의해서 사용하고 있던 사원번호가 있 다는 것은 굳이 언급할 필요도 없다. 그러나 좀더 깊이 생각해 본다면 사원 집합의 개체는 사람이므 로 사실 본질 식별자는 주민등록번호라고 볼 수 있다. 물론 외국인 사원이 있다면 여권번호, 외국인 등록번호 등이나 임시로 부여한 임의의 값을 광의의 주민등록번호로 정의한다면 이것을 개념적으로 는 원래의 본질 식별자로 볼 수 있다. 뒤에서 확정 식별자를 설명할 때 전략적인 부여 방법에 대해 자 세하게 언급하겠지만 이 주민등록번호는 몇 가지 전략적인 이유 때문에 사원번호라는 인조 식별자에게 대표 권한을 물려준 것이다.
2) 절대 종속 / 상대 종속 의미
절대 종속과 상대 종속은 나를 태어나게 하는데 절대적인 영향을 주었는지, 그렇지 않는지를 따지 는 것이다. 다시 말해서 내가 태어나기 위해서 절대적으로 존재했어야 하는지, 아니면 그것이 없어도 내가 태어날 수가 있는지를 확인하는 것이다. 절대 종속을 확인하는 방법은 매우 간단하다. 영화 백 투더 퓨쳐(Back To the Future)처럼 과거로 돌아가서 누구를 없앴더니 내가 태어나지 않게 된다면 그는 나를 태어나게 하기 위해 절대적으로 필요한 존재이다. 반면에 누군가가 우리 집안과 분명히 어 떤 관계를 맺고 살았지만 설혹 그가 없다고 하더라도 내 탄생에는 아무런 영향을 미치지 않는다면 그는 나의 탄생에 대해서는 상대 종속이 된다.
3) 직접 종속 / 간접 종속 의미
‘1촌이냐? 1촌 이상이냐?’를 구분한다. 즉, 부모 엔터티와의 관계가 1촌이면 직접 종속이고 1촌 이상이면 간접 종속이라고 볼 수 있다.
4) 행위 엔터티의 본질 식별자
행위 엔터티의 본질 식별자란 이와 같이 절대종속이면서도 직접종속인 것을 찾고자 하는 것이며, 결국은 자신을 태어나게 한 근본을 찾는 것이다.
본질 식별자를 찾는 가장 확실한 방법은 사건의 전모를 가장 체계적으로 표현할 수 있다는 기사 작 성의 여섯 가지 원칙인 육하원칙(六何原則)을 이용하는 것이다. ‘누가, 무엇을, 언제, 어디서, 어떻 게, 왜’라는 이 여섯 가지의 질문을 통해 발생된 행위를 구체적으로 규명하면 상황에 대한 정확한 사 실을 규명할 수 있다.
후보 식별자 도출
이전 단계에서 정의된 본질 식별자를 기본으로 식별자의 기본 목적인 자기를 식별할 수 있어야 한 다는 유일성 유지의 목적과 다른 엔터티에서 정보로 참조해야 하는 목적을 적절히 판단하여 최종 식 별자를 확정해야 한다. 하나의 엔터티 내에는 식별자로 사용할 수 있는 하나 이상의 식별자가 있다. 이 중에서 하나가 식별자로 선택되게 된다. 나머지 식별자들을 후보 식별자(Candidate UID, 방법 론에 따라서는 CK 혹은 Candidate Key라고도 하지만 현재 단계에서 Key 라는 표현보다는 식별자 라는 표현이 더 적절하다)라고 한다. 이러한 후보 식별자들은 다음과 같은 조건을 만족해야 한다.
1) 각 인스턴스를 유일하게 식별할 수 있어야 한다
가장 기본적인 전제 조건이며, 후보 키들은 유일한 값을 가지고 이를 통해 나머지 인스턴스와 자신 을 식별하는 능력을 가져야 한다. 후보 식별자는 단일 속성뿐만 아니라 하나 이상의 속성이 모인 집 합으로서도 후보 식별자가 될 수 있다. 그러므로 속성 혹은 여러 속성들이 조합된 속성 집합은 전체 인스터스에서 유일 값을 가져야 한다. 그래야만 특정한 인스턴스를 선택하기 위해서 전체 인스턴스에서 유일한 값을 가지는 후보 식별자를 선택할 수 있다.
2) 나머지 속성들을 직접 식별할 수 있어야 한다
인스턴스 간에서 뿐만이 아니라 후보 식별자는 나머지 속성을 식별할 수 있는 능력을 가지고 있어 야만 한다. 이는 후보 식별자가 유일 값을 가지고 있는 상황에서 특정 인스턴스를 추출하기 위해서 유일 값을 가진 후보 식별자를 찾아내면, 후보 식별자에 관련된 나머지 속성을 다시 찾아낼 수 있다 는 의미이다.
3) NULL이 될 수 없다
후보 식별자들은 NULL이 될 수 없다. NULL이란 해당 속성에 값이 지정되지 않았다는 적극적인 표시라고 볼 수 있다. 따라서 NULL이 허용되는 속성이 있다면 값을 넣지 않은 경우에는 NULL이 할당된다. NULL이 할당되었다는 것은 값이 없다는 것이므로 NULL이 있는 속성은 식별할 수가 없다.
4) 후보 식별자로 속성 집합을 선택하는 경우에는 개념적으로 유일해야 한다
집합으로 후보 식별자를 선택하는 경우에는 개념적으로도 유일할 것이라는 판단을 하고서 후보 식 별자로 선정해야만 한다. 만일, 회원 테이블에 대한 견본 데이터를 보고서 부서+성명 집합이 유일한 값을 가진다고 판단했다고 하더라도 개념적으로 부서에 동일한 이름을 가지는 사원이 없다고 확신할 수 있겠는가? 하지만 만일에 부서를 관리하는 엔터티에서 부서명+팀명을 후보 식별자로 선택하는 것은 개념적으로 유일할 수 있다. 한 부서에 동일한 이름을 가지는 팀은 없기 때문이다.
5) 후보 식별자의 데이터는 자주 변경되지 않는 것이어야 한다
데이터가 자주 변경된다고 해서 후보 식별자가 될 수 없는 것은 아니지만 일반적으로 후보 식별자 의 값은 자주 변경되지 않는다. 데이터? 인덱스를 통 해서 구현되게 된다. 인덱스는 포인터들을 관리하게 된다. 어떤 노드의 데이터가 변경되면 트리 구조를 재수정하는 데에 너무나 많은 시간이 필요하게 되 어 데이터베이스의 성능을 떨어뜨리게 되므로, 인덱스에 선택되는 칼럼의 데이터가 자주 변경되는 것은 좋지 않다.
대체(보조) 식별자
보조 식별자란 원래의 식별자를 대신할 수 있는 또 다른 속성들이나 릴레이션십을 말한다. 가령 사 원 엔터티에 공식적으로 부여된 식별자는 사원번호이지만, 만약 주민등록번호 속성이 유일한 값을 가지면서 필수적(Mandatory)으로 정의되었다면 비록 공식적인 식별자는 아니지만 식별자로서의 역할을 할 자격은 충분히 갖추고 있다. 특히 보조 식별자는 여러 참조 엔터티 중에서 원래의 식별자 보다 보조 식별자로 연결을 맺는 것이 자신에게는 훨씬 유리한 경우에 의미가 있게 된다.
인조 식별자 지정
인조 식별자란 식별자 확정시 기존의 본질 식별자를 그대로 실질 식별자로 인정할 수 없는 여러 가 지 상황이 발생했을 때, 전부 혹은 일부를 임의의 값을 가진 속성들로 대체하여 새롭게 구성한 식별 자를 말한다. 가령, 사원 엔터티에 이미 존재하고 있는 속성 중에서 원래의 본질 식별자를 찾으라고 한다면 주민등록번호가 될 것이다. 그러나 이 속성은 너무 길고 관리상 여러 가지 문제점이 발생하기때문에 새롭게 사원번호라는 임의의 값을 가진 인조 속성을 영입하여 공식적인 식별자 자리까지 부 여받은 것이다. 인조 식별자는 다음과 같은 기준을 가지고 지정하는 것이 바람직하다.
1) 최대한 범용적인 값을 사용한다
인조 식별자의 속성은 남들이 알지 못하는 임의의 값일 수 있기 때문에 특별한 결격 사유가 없다면 가능한 한 기존에 범용적으로 사용하던 것을 그대로 사용하는 것이 좋다. 예를 들어, 이미 회사 내에 공인되어 사용하고 있는 사원번호, 상품코드, 국가나 공공 기관에서 부여한 은행코드, 국제적으로 사 용하고 있는 무역상품 분류체계인 HS코드, 범용적으로 사용하고 있는 국가나 통화(通貨)코드 등은 가능하다면 그대로 사용하는 것이 여러 가지로 유리한 점이 많다.
2)유일한 값을 만들기 위한 인조 식별자를 사용한다
지금까지 정의해 왔던 본질 식별자를 그대로 사용하면 심각한 문제가 발생하는 경우가 몇 가지 있 다. 여기에서는 그 중에서 한 가지인 유일값에 대한 확신이 없을 때 이를 해결하기 위해 인조 속성을 영입하는 경우에 대해 설명하고자 한다. 어떤 경우에는 본질 식별자는 논리적으로야 문제가 없지만 실제적으로는 유일성에 대한 현실적인 문제가 발생하므로 인조 속성의 도입을 검토해야만 한다. 물 론 그 인조 속성을 아예 전체 본질 식별자를 대체하도록 하든, 그 중의 일부를 대체하게 하든 종합적 인 판단에 따라 달라지겠지만 인조 속성이 필요하다는 것은 분명하다. 사실 실전에서 인조 속성을 도 입하는 상당 부분은 바로 이런 경우라고 할 수 있다.
3)하나의 인조 식별자 속성으로 대체할 수 없는 형태를 주의한다
인조 속성을 만들 때 이 속성이 구체적으로 본질 식별자의 어느 부분을 대체하고 있는지를 분명하 게 정의해야 한다. 그러나 하나의 인조 식별자 속성에 같이 대체될 수 있는 것과 절대로 그렇게 해서 는 안 되는 경우가 있다는 것에 유의해야 한다. 만약 이런 원칙을 어긴다면 나중에 집합 내의 개체의 정의가 모호해져 엔터티 전체를 애매한 집합으로 변질시키게 되므로 주의해야 한다.
4)편의성 ·단순성 확보를 위한 인조 식별자를 사용할 수 있다
속성의 길이가 너무 길거나 기억하기가 어려워서 좀더 쉽고 간편한 이름으로 변경할 목적으로도 인조 속성을 추가시킬 수도 있다. 마치 사람의 이름을 간편하고 부르기 쉽도록 애칭이나 별명을 만드 는 것과 유사한 목적이라 할 수 있다. 성을 포함해서 대부분 세 글자에 지나지 않는 우리나라 사람들 에게는 그리 흔치 않는 일이지만 훨씬 긴 이름을 가진 외국 사람들에게 흔하게 사용된다. 이처럼 본 질 식별자를 그대로 사용해도 불편이 없다면 굳이 인조 속성을 만들 필요가 없겠지만 그렇지 않다면 고려해 볼 만한 충분한 가치가 있다.
5)의미의 체계화를 위한 인조 식별자를 사용할 수 있다
의미를 체계화한다는 말을 다른 말로 쉽게 표현하면 코드화를 한다는 것과 유사하다. 과거에는 전산 은 곧 코드라는 말이 있을 정도로 모든 것을 코드화하려고 애를 썼다. 코드화한다는 말에는 곧 속성 의 자릿수마다 나름의 의미를 부여하겠다는 의미를 포함한다. 논리적으로 임의의 값이란 말에는 이미 정해진 값의 형태가 포함되어 있다. 인조 속성이란 임의의 값을 정의하는 것이라고 했다. 그렇다고 해서 그야말로 아무 값이나 괜찮다는 것은 아니다. 특별한 의미를 부여할 필요가 없다면 순차적인 번호, 곧 일련번호를 정의하는 것으로도 충분하겠지만 특정한 의미를 부여함으로써 변별력이 향상된 다거나 처리의 규칙이 생겨난다면 너무 지나치지 않는 한 그것을 무조건 나쁘다고만 할 수는 없다.
6)내부적으로만 사용하는 인조 식별자
인조 식별자를 생성하는 또 한 가지의 경우는 현업 사용자들에게는 전혀 알려주지 않으면서 시스템 내부적으로만 사용하는 형태이다. 물론 데이터 모델링 입장에서 본다면 현업 사용자뿐만 아니라 시 스템 개발이나 관리를 하는 사용자 또한 엄연한 사용자임에 틀림이 없다. 여기서 설명하고자 하는 것 은 새롭게 정의한 인조 식별자가 비록 업무적으로는 아무런 의미도 없지만 시스템적인 필요성에 의 해서 도입하는 경우를 소개하려는 것이다.
식별자 확정
식별자는 자기 엔터티를 위해 생성하는 것처럼 보인다. 하지만 보다 중요한 결정 요소는 나를 참조 할 다른 엔터티가 원하는 형태로 결정되어야 하는 것이기 때문에 주변 엔터티의 상황을 종합적으로 살피고, 주변 엔터티의 상황도 최대한 수렴할 수 있도록 하는 것이 매우 중요하다. 그래서 식별자를 확정할 때는 자기 자신에 대한 존재 가치뿐만 아니라 남들에 대한 배려를 어떻게 조화시키느냐가 중 요한 관건이다.
1) UID BAR의 두 가지 의미
UID BAR가 가지고 있는 본질을 자세히 살펴보면 크게 두 가지의 의미를 가지고 있다.
가) 식별자로서의 역할
엔터티 자신의 입장에서 보았을 때 자신의 개체들을 다른 것들과 구별될 수 있도록 유일한 값을 만드는데 일조를 한다는 의미이다.
나) 정보로서의 역할
참조하는 엔터티의 입장에서 보았을 때 상대방의 식별자를 상속 받았기 때문에 자신이 보유한 정보가 증가했다는 의미도 가지고 있다.
조상의 식별자를 내가 상속 받고, 다시 그것을 내 자손들에게 물려준다면 자손들은 굳이 나를 경유 하지 않고서도 조상이 누구인지 알 수 있는 것과 유사하다. 인조 식별자를 설명하면서 언급했듯이 단 지 유일한 값을 만들기 위한 목적 뿐이었다면 굳이 부모에게 받은 식별자를 자신의 식별자에 넣지 않 고서도 얼마든지 유일한 값을 만드는 것이 가능하다. 이 말에는 부모의 식별자를 내 이름에 넣는 것 에 상관없이 내가 태어난 이상 부모는 존재한다는 의미가 내포되어 있다. 비록 부모가 분명하더라도 부모의 식별자가 나의 식별자를 만들기 위해서 반드시 필요한 것은 아니라는 것이다. 그러나 내 식별 자에 부모의 식별자를 포함시키지 않자?이란 단지 자기 식별자의 형태를 결정한다는 단순한 의미로만 생각해서는 안 된없이 복잡해지더라도 식별자 상속이 전략적으로 이루어진 다면 나중에 데이터를 처리할 때의 실제 액세스 단계에서는 훨씬 간편하게 만들 수 있다. 즉, UID의 적절한 상속과 단절 전략은 실질적인 처리의 단순화를 가져다 줄 수 있으므로 그 전략적 가치를 가지 고 있다.
[그림 2]에서 보면 A_엔터티와 B_엔터티 사이의 릴레이션에 UID BAR가 있다는 것은 C_ 엔터티와 B_엔터티 사이의 릴레이션에 UID BAR의 존재 여부와 상관 없이 무조건 조부모인 A_ 엔터티의 식별자 A를 상속 받게 된다는 것을 의미한다. 이는 곧 C_엔터티에는 A가 있으므로 이 미 아버지인 B_엔터티를 경유하지 않고서도 직접 A_엔터티와 연결될 수 있음을 의미한다. 이 릴 레이션십에 의해 부모나 그 이상의 조상에게 있던 식별자 속성이 설계 단계에서 나에게 상속된 다는 의미일 뿐이지 참조하는 경로가 그렇게 되어야 함을 뜻하는 것은 결코 아니다. 이렇게 평범 하고 당연해 보이는 사실이 갖는 진정한 가치는 우리가 상속 여부를 결정할 때 매우 중요한 판단 의 기준이 된다.
3)식별자 확정 절차
하향식(Top-down) 방식, 즉 상위 엔터티부터 시작해서 하위 엔터티로 순차적으로 결정해 가는 것이 좋다. 식별자 상속이란 상위에서 하위로 이루어지기 때문이다.
가) 키 엔터티 식별자 확정
부모를 가지지 않는 최상위 엔터티이므로 서로 독립적으로 식별자를 확정할 수 있다. 사실 엄밀 히 말하면 최상위 엔터티인 키 엔터티는 본질 식별자와 굳이 다르게 할 필요가 없으므로 본질 식별 자를 결정하는 단계에서 미리 식별자를 확정하는 것이 좀더 현실적이다. 물론 식별자 확정 단계에 서 주변의 상황과 여건을 감안하여 일부를 조정하여 최종적으로 확정한다.
나) 메인 엔터티 식별자 확정
메인 엔터티는 해당 업무의 근본이 되는 엔터티라고 할 수 있으므로 자신이 하위에 거느리고 있 는 수많은 엔터티의 상황을 종합적으로 감안한 전략적인 결정을 해야 할 것이다. 이러한 엔터티는자신의 하위 엔터티에게는 최상위 조상이기도 하므로 될 수 있는 대로 식별자 속성의 개수를 적게 하는 것도 중요하다. 이런 이유 때문에 경우에 따라서는 전체를 대신하는 인조 식별자를 생성하기 도 한다.
다) 하위 엔터티 식별자 확정
이런 부류의 엔터티는 가능하다면 인조 속성을 많이 사용하지 않는 것이 바람직하다. 그 이유는 인조 속성이란 임의의 값을 의미하므로 유일성에는 도움을 줄지 모르지만 정보로서의 가치는 현저 하게 감소하기 때문이다.
출처 : DB 포탈 사이트 DBguide.net
'데이터 모델링' 카테고리의 다른 글
논리 데이터 모델링 - M:M 관계 해소 (0) | 2010.10.04 |
---|---|
논리 데이터 모델링 - 정규화(Normalization) (0) | 2010.09.29 |
논리데이터 모델링 - 속성 정의시 유의사항 (0) | 2010.07.21 |
논리 데이터 모델링 - 속성 검증 및 확정 (0) | 2010.07.20 |
논리 데이터 모델링 - 속성 후보 도출 (1) | 2010.07.08 |